
Better Test Design:
A Journey to Succeed with UI Automation

https://smartbear.com/product/testcomplete/overview/

Scale your UI Test Automation
Strategy with TestLeft

LEARN MORE ABOUT TESTCOMPLETE

https://smartbear.com/product/testcomplete/overview/
https://smartbear.com
https://smartbear.com/product/testcomplete/overview/

BETTER TEST DESIGN: A JOURNEY TO SUCCEED WITH UI AUTOMATION 3

UI automation often starts on a great
note. You buy a test automation tool
and start writing automated tests.
But then over time, as you begin to
scale your testing efforts — from ten
tests to hundreds or even thousands
— maintenance of UI tests becomes
difficult.

The brittleness of UI tests can be caused by many factors,

ranging from test design, test data or even environment

configurations. Test design in particular can often cause

serious issues as your testing progresses. For example,

let’s assume you write a test consisting of actions that

drive directly at the HTML layer. The challenges with such

a process are that even the smallest changes to the UI

would cause these tests to break. Tests thereby are brit-

tle. And as a result, the testing process becomes less

scalable, stable, and reusable.

Another challenge affecting the test design process is

that UI tests are often tests dependent on each other.

This lack of independence in turn causes challenges

primarily because when one test fails, the tests that

are dependent on that component can break. We

created this eBook to focus upon how as a tester you

can create a testing framework that scales as well as

is easier to maintain. This eBook is structured into five

parts:

1.	 Where does UI automation typically go wrong?

2.	 Why UI tests are essential part of your testing

strategy?

3.	 An example of a badly written test

4.	 Design frameworks to overcome the UI challenges

5.	 Application of these frameworks with real world

examples

https://smartbear.com
https://smartbear.com/product/testcomplete/overview/

BETTER TEST DESIGN: A JOURNEY TO SUCCEED WITH UI AUTOMATION 4

So let’s start with the first part, where does UI automation go wrong. Let’s explore this with an example:

https://smartbear.com
https://smartbear.com/product/testcomplete/overview/

BETTER TEST DESIGN: A JOURNEY TO SUCCEED WITH UI AUTOMATION 5

From the first look, this seems to be very well written

test. We are performing 6 different actions here.

•	 Finding the username text box

•	 Setting the user name text box

•	 Finding the password text box

•	 Setting the password text box

•	 Finding the login button

•	 Clicking the login button

Even with just six actions being performed, there are de-

signing challenges with tests. And the numbers of tests

increase, these challenges will just increase exponential-

ly. Let’s explore these challenges:

First and foremost there is a lot of duplication taking

place. Take for instance, browser.Find is being repeated

three times. No if sometime in the future we want to

change browser.find, we will have to make changes

at three places, even with such a small code. This

duplication inturn poses maintainability challenges in the

future.

Secondary, since this is procedural code readability can

be a pain.

Thirdly, reusability of this code for different test cases

can be near to impossible as there are no modularity

practices being followed.

Lastly, the use of magic strings within the code makes

maintainability a hassle as well. Primarily because, if my

identified for loginbutton changes from “MainContent_

login_button” to “Content_login_button”,we will have to

make changes at numerous place in the test.

https://smartbear.com
https://smartbear.com/product/testcomplete/overview/

BETTER TEST DESIGN: A JOURNEY TO SUCCEED WITH UI AUTOMATION 6

While such test automation could be useful, one

thing to keep in mind while following test automation

pyramid strategy is that the extensive feedback one

receives from GUI tests can’t be achieved from Ser-

vice level or Unit level tests. Take the following as an

example.

Here I am driving to a test web application such as

Amazon. And when I do that, I get an end-to-end

feedback. This is primarily because UI tests touch dif-

ferent parts of the application that’s being tested. For

instance, the incase of Amazon the UI tests start the

browser level (Chrome, Mozilla, Edge, etc.),then goes

on to touch framework (AngularJS/HTML5), network,

and finally the service or database. This looks some-

thing like this:

of REST. Pdheres to the RESTful architecture con-

straints.

Test pyramid strategy can come in handy, but..

Often when solving brittle GUI tests, test pyramid automa-

tion strategy is presented as a solution. The test automa-

tion pyramid strategy calls for automating tests at three

different levels. Unit testing represents the base of test au-

tomation pyramid and the largest part. Next come, service

layer or API testing. And finally since GUI tests sit at the top

as we want to do least of them as possible. The pyramid

looks something like this:

Service

Unit

UI

x

Browser: Chrome
HTML5,

Angular JS Network Service/API/Database

End-to-end testing

x x x

https://smartbear.com
https://smartbear.com/product/testcomplete/overview/

BETTER TEST DESIGN: A JOURNEY TO SUCCEED WITH UI AUTOMATION 7

•	 Confirmation Page: The final page a user lands

after making a purchase.

Over the next part of the presentation, we will discuss

three different models in which you can use to start work-

ing on an automation framework. All these three models

are built upon the concept of a page object. Hence, let’s

dig into this in more detail.

Introducing a Page Object Model

Building a robust UI test automation strategy begins with

following a page object model for your test cases. Within

a page object model, you’ll be creating a class for every

page within your application. Or in other words, each

webpage will be represented as class.

Let’s take the following as an example. Here I am en-

suring a book is added to cart and Procees to checkout

button works as expected on the Confirmation Page. This

essentially means I will have to navigate through four

steps in order to reach the Confirmation page. These are

•	 Homepage: Where the user first lands and begins a

search.

•	 Search Result Page: The page that displays the avail-

able books, based on the search.

•	 Product Details Page: After a user selects a book and

wants to read more about it and see pricing options.

https://smartbear.com
https://smartbear.com/product/testcomplete/overview/

BETTER TEST DESIGN: A JOURNEY TO SUCCEED WITH UI AUTOMATION 8

From a pictorial standpoint, the process looks as follows:

Home Page of Amazon

Result Search Page

Product Details Page

Confirmation Page

https://smartbear.com
https://smartbear.com/product/testcomplete/overview/

BETTER TEST DESIGN: A JOURNEY TO SUCCEED WITH UI AUTOMATION 9

In this case, each webpage of Amazon would be repre-

sented as one particular class. For example home page

of Amazon is one class, followed by result search page,

product details page, and finally a confirmation page as

another three sets of page classes.

Once page objects for each page have been created,

the three models presented below just build upon the

page object. And as we go from model 1 to model 3, the

abstraction increases. And since abstraction increases,

maintainability of test cases becomes much easier. Let’s

start by looking at abstraction model1.

Abstraction Model #1: Abstracting the Control
Identifiers Only

The first model we’ll look at will be the easiest to im-

plement but will offer the least amount of abstraction

within the test. This method can be a good first step

for UI testing teams that are in the early stages of

implementing a UI automation strategy.

What does this look like in action?

In model 1, we are abstracting only the control identi-

fication for the object on the page. Let’s for example

you are interacting with login button control in your

UI tests. There could be a number of ways to identify

this controls including XPath, Name, or Property. The

process would work something like this:

•	 Each webpage in your application would be repre-

sented as a class

•	 Within that class, the identifications of these con-

trols are abstracted within a property or a method

Model 1

1

Abstraction
Increases

Model 2

2

Model 3

3

https://smartbear.com
https://smartbear.com/product/testcomplete/overview/

BETTER TEST DESIGN: A JOURNEY TO SUCCEED WITH UI AUTOMATION 10

A graphical representation looks something like the following. We have page object class for various pages and with-

in the page object class we have classes for abstracted control identification. And using those page objects and ab-

stracted identifiers, we create tests having different test steps.

Page Object Class 1

Test

Page Object Class 2

Abstract control identifications

Test steps

Abstract control identifications

https://smartbear.com
https://smartbear.com/product/testcomplete/overview/

BETTER TEST DESIGN: A JOURNEY TO SUCCEED WITH UI AUTOMATION 11

Let’s now apply the abstraction model 1 to the brittle test discussed in the previous part of this white paper.

The benefits:

By abstracting the control identification, you will condense the test into more manageable portions. So for this exam-

ple, we have abstracted the control identification into the method: UserNameEdit.

Using the abstracted control identification

Abstracting control identification

https://smartbear.com
https://smartbear.com/product/testcomplete/overview/

BETTER TEST DESIGN: A JOURNEY TO SUCCEED WITH UI AUTOMATION 12

Once we have abstracted the control identifier “Main-

Content_username” in a method, we are simply calling

the method in login model class. This then allows us to

use the SetText method against it.

One of the bigger benefits of this abstraction is that

if my object identification changes, we need to make

changes at only place, unlike in the first model. This in

turn makes the test more maintainable. But this model

still has challenges. Let’s look at them:

The limitations:

To begin with there is some sort of redundancy still

involved, which in turn results in maintainability chal-

lenges. Take the following as example: setText is being

called twice in the Login Method itself. So as our test

cases increase, if we want to change the set text to

different action, a big repeatability takes place. So in the

next model we would abstract actions into a page ob-

ject.

Abstraction Model #2: Abstracting the Control
Identification and Action

Model #2 addresses some of the challenges that are

still present in model #1.

Similar to the first model, we are abstracting the con-

trol identification for the object on the page within a

class. So the process remains somewhat similar:

•	 Each webpage in your application would be

represented as a class

•	 Within that class, the identifications of these con-

trols is abstracted within a property or a method

But then, unlike the previous model, in this model

you’re actually abstracting the control actions. Exam-

ple of these control actions are clicking on a button,

setting the text of a control, and getting the text. The

graphical representation looks something like this:

Page Object Class 1

Test

Page Object Class 2

Abstract controls

identification

Abstract controls actions

Test steps

Abstract controls

identification

Abstract controls actions

https://smartbear.com
https://smartbear.com/product/testcomplete/overview/

BETTER TEST DESIGN: A JOURNEY TO SUCCEED WITH UI AUTOMATION 13

When applied to the brittle test example discussed above, following is how the example looks like:

The benefits:

In the above example, we have abstracted the control identification in the method UserNameEdit. Similarly, in the

method UserNameEdit we have abstracted the setText action. For instance, if later, you decide to send a string of key

strokes instead of setText action, you can do it in just one method UserNameEdit.

Using the abstracted set text action

Abstracting the set text action for the control

Locating the control

https://smartbear.com
https://smartbear.com/product/testcomplete/overview/

BETTER TEST DESIGN: A JOURNEY TO SUCCEED WITH UI AUTOMATION 14

The limitations:

Model #2 allows you to take the principles that are intro-

duced in model #1 and more effectively scale it across

test cases. For a majority of testing teams, following this

framework will be enough to improve the scalability of

your UI automation strategy. In fact, model #2 will likely

solve a majority of the testing challenges you’ll face when

testing at the UI layer.

But the final area that is not addressed in this model

is Magic Strings. In the method, UserNameEdit, we

have string literal in a quoted string. Good program-

ing practices state that instead of using literals within

a test code, it’s better to define a constant for the

literal with a semantic name and in turn use that se-

mantic name within the code. The challenge can be

seen below and this is what we solve in third model.

Magic Strings

https://smartbear.com
https://smartbear.com/product/testcomplete/overview/

BETTER TEST DESIGN: A JOURNEY TO SUCCEED WITH UI AUTOMATION 15

login control, logout control, check box, text box, etc.

Next, you’ll abstract the actions which you perform on

those controls. This code actions could be a SetText,

GetText, or even a click of a button.

And then finally, you’ll abstract magic strings as well.

Similarly to what you saw in the previous models,

you’ll be able to apply this model to separate pages

to create Test Steps. The graphical representation

could look something like this:

Abstraction Model #3: Control Identification,
Action, and Magic Strings

The most efficient way to scale your UI test automation

is to abstract all areas of the test. This includes abstract-

ing control identifiers, abstracting actions, and finally

abstracting Magic Strings as well. So to sum up, in this

model you have a page object model where you create a

class for different pages in the applications. Once you do

that, you abstract the controls on that page — for example

Page Object 1

Test

Page Object 2

Abstract finding controls

Abstract actions

Abstract magic strings

Test steps

Abstract finding controls

Abstract actions

Abstract magic strings

https://smartbear.com
https://smartbear.com/product/testcomplete/overview/

BETTER TEST DESIGN: A JOURNEY TO SUCCEED WITH UI AUTOMATION 16

To recap:

•	 While it’s important to implement a test pyramid ap-

proach to limit the number of tests that are performed

at the UI layer, you still need a plan for how you’re

going to scale your UI test automation. UI tests provide

a level of feedback that is unable on the service or unit

level, and failing to test at the UI level will lead to un-

foreseen defects that can cause issues in production.

•	 Scaling your UI test automation starts with following a

page object model. In this model, you need to look at

each page in your application as a separate class.

•	 Once you’ve created an object model, you can use

abstraction to limit the complexity of your tests, reduce

technical debt, and improve the maintainability of your

test cases. The best approach is to abstract the control

identification, the action, and the magic strings.

https://smartbear.com
https://smartbear.com/product/testcomplete/overview/

Scale your UI Test
Automation Strategy with

TestComplete

TRY IT FOR FREE TODAY

https://smartbear.com
https://smartbear.com/product/testcomplete/free-trial/
https://smartbear.com
https://smartbear.com/product/testcomplete/overview/

BETTER TEST DESIGN: A JOURNEY TO SUCCEED WITH UI AUTOMATION 18

Over 4 million software professionals and
25,000 organizations across 194 countries

use SmartBear tool

4M+ 25K+ 194
users organizations countries

See Some Succesful Customers >>

API
READINESS

TESTING PERFORMANCE
MONITORING

CODE
COLLABORATION

Functional testing through
performance monitoring

SEE API READINESS
PRODUCTS

Functional testing,
performance testing and test

management

Synthetic monitoring for API,
web, mobile, SaaS, and

Infrastructure

Peer code and documentation
review

SEE TESTING
PRODUCTS

SEE MONITORING
PRODUCTS

SEE COLLABORATION
PRODUCTS

https://smartbear.com
https://smartbear.com/product/testcomplete/overview/
http://smartbear.com/company/customers/
http://smartbear.com/product/ready-api/overview/
http://smartbear.com/products/testing/
http://smartbear.com/product/alertsite/overview/
http://smartbear.com/product/collaborator/overview/
http://smartbear.com

https://smartbear.com/product/testcomplete/overview/

