
WEB TESTING AND SELENIUM: THE CURRENT STATE AND FUTURE POSSIBILITIES 1

Web Testing and Selenium:
The Current State & Future Possibilities

http://smartbear.com
https://smartbear.com/product/testcomplete/overview/
https://smartbear.com/product/testcomplete/overview/

WEB TESTING AND SELENIUM: THE CURRENT STATE AND FUTURE POSSIBILITIES 2

TestComplete is a Single Tool
for All Your Test

Automation Needs

LEARN MORE ABOUT TESTCOMPLETE

http://smartbear.com
https://smartbear.com/product/testcomplete/overview/
http://smartbear.com
https://smartbear.com/product/testcomplete/overview/
https://smartbear.com/product/testcomplete/overview/

WEB TESTING AND SELENIUM: THE CURRENT STATE AND FUTURE POSSIBILITIES 3

Content
Preface 4

Web Testing Trends in 2016 6

The Impact of Responsive UI 8

The Evolution of Selenium:
How Selenium is Adjusting to Current Trends 9

Future Challenges and Solutions: 2016 and Beyond 11

Overcome Your Test Automation Challenges 17

http://smartbear.com
https://smartbear.com/product/testcomplete/overview/

WEB TESTING AND SELENIUM: THE CURRENT STATE AND FUTURE POSSIBILITIES 4

Web is undergoing dramatic changes
which continue to alter the way
automated tests are created and
maintained. An example of the intricate

nature of web is the increased usage of Web

Components (Templates, Shadow DOM, and

Custom Elements), which are often leveraged

while building sophisticated UI. Add to that,

browsers becoming increasingly dependent on

JavaScript and other open web technologies —

which often result in automated tests being slow,

brittle, and hard to maintain.

Over the last year, we have also seen browser vendors

placing a lot of emphasis on making web secure, stable,

and power-efficient. And in that process, they have made

it difficult for testers to bypass UI by restricting access

through plug-ins and APIs.

With all these changes taking place, Selenium has be-

come the default standard for web testing, as evidenced

by a 300% increase in job postings over the past 3

years. It has come a long way since its inception with

Selenium IDE (Integrated Development Environment)

and Selenium 1 (Selenium Remote Control). The future

of Selenium looks different than it did a year back.

The question then arises: what do all these trends

mean for web testing and how can testers equip them-

selves to better handle these changes? Also, it is cru-

cial to understand what the future of Selenium looks

like. That’s why we created this eBook.

http://smartbear.com
https://smartbear.com/product/testcomplete/overview/

WEB TESTING AND SELENIUM: THE CURRENT STATE AND FUTURE POSSIBILITIES 5

In this eBook, we will look at:

• Web Testing Trends in 2016: What has happened

in Web over the last year and how do these changes

impact automated testing?

• How Selenium is Evolving to Address These

Challenges: The numerous ways in which Selenium is

accommodating to these trends.

• Challenges with Selenium and Essential Solutions:

The challenges traditionally associated with using

Selenium and different ways in which QA teams can

overcome these challenges.

• Tools for Scaling Your Selenium Tests: How integra-

tions with automated testing and test management

tools help scale your Selenium tests?

http://smartbear.com
https://smartbear.com/product/testcomplete/overview/

WEB TESTING AND SELENIUM: THE CURRENT STATE AND FUTURE POSSIBILITIES 6

Web Testing Trends in 2016

Web is undergoing dramatic changes which continue

to alter the way automated tests need to created and

maintained.

Let’s start by looking at three of the biggest trends

happening in Web in 2016:

1. Quality is becoming more important, leading to in-

creased complexity for automated tests

One of the biggest trends we saw in 2015 was that ensur-

ing high quality across multiple browsers became more

complex for QA testers. This was primarily because of the

fact that browser vendors such as Chrome, Firefox, etc.

became increasingly locked down. A few examples of

browser vendors placing a renewed focus on high quality

by becoming locked down include:

Browsers block APIs: In an effort to improve security,

many browsers began limiting access to specific APIs in

2015. One of the APIs which browsers started restricting

is NPAPI API. In fact, if you were someone with an auto-

mation tool using NPAPI API to access your browser, your

tests will have started breaking because of this change.

Browsers block technologies: On a similiar note,

browsers also began limiting access to certain tech-

nologies that proved to be a security challenge. For

example, one of the technologies which got blocked

completely over the past year was Flash. Organi-

zations, such as Google, took similiar steps when it

blocked Flash Ads, and we saw Microsoft and Mozilla

following the same trend.

Lengthening plugin approval processes: In order to

improve quality and security, the approval process for

plug-ins also got longer, and increasingly stringent. For

example, with Firefox 42, developers are required to

submit extensions for review and signing to Mozilla pri-

or to development. More importantly, if you have any

unsigned add-ons, these cannot be installed or used

with Firefox.

http://smartbear.com
https://smartbear.com/product/testcomplete/overview/

WEB TESTING AND SELENIUM: THE CURRENT STATE AND FUTURE POSSIBILITIES 7

stand because each of the browsers render JavaScript

through runtimes in a different fashion. Since runtimes

are different, ensuring test cases are working properly

on each and every browser can become challenging.

3. UI gets increasingly sophisticated

While all these changes are taking place, UI continues

to get much more sophisticated, and as a result, much

more complex for testers.

Web components – move from DOM to Shadow

DOM: An example of Shadow DOM could be when you

embed a video on your website. In this case, you would

have the source ID with your video ID, but when you

are rendering the video on your website, each brows-

er already has an embedded code in order to make

the code work. For example, in the case of browsers

this could be the play button, volume button, pause

button, etc and the code for these buttons is primarily

embedded in Shadow DOM. As you can see, Shadow

DOM can be particularly useful while encapsulating

the HTML mark up, CSS styles, and Javascript. It helps

developers to decide what is rendered and what is not.

However, it causes problems for testers, as accessing

shadow DOM elements can be tough.

2. Web continues to evolve

At the same time, there are many things happening which

make web more challenging and cumbersome to test.

Influence of mobile on testing: It’s no secret that the in-

creased adoption of mobile is having a significant impact

on all areas of the software world. This is especially true

for teams responsible for testing any software. For exam-

ple, since mobile-friendliness is a factor for website rank-

ings, testers primarily responsible for testing desktop are

now being asked to ensure high quality on mobile web as

well. This means testers need to learn new skills specifi-

cally for testing mobile apps.

Open web standards: The way app development and

web development is shaping up, developers are mov-

ing towards the use the same source code for web and

app development. As a result, there is a move from pure

HTML5 or JavaScript to a combined JSX, or even Face-

book’s React Native engine, just because these tech-

nologies allow developers to use the same source code

across web and mobile apps. The use of these technol-

ogies means testers come under more pressure to test

across devices in a reduced timeline.

Growing use of JavaScript: Browsers are increasingly be-

coming dependent on JavaScript. This is critical to under-

http://smartbear.com
https://smartbear.com/product/testcomplete/overview/

WEB TESTING AND SELENIUM: THE CURRENT STATE AND FUTURE POSSIBILITIES 8

The impact of responsive UI

When releasing an application, you now have to test

it on desktop and web, as well as mobile. Responsive

UI makes things increasingly complicated for testers,

because each and every mobile device has a different

screen resolution and operating specs. The way pages

render can also vary on different devices and browsers.

One example of this is Canvas, which is part of HTML5

and is an element that’s used to draw graphics on a web

page. Canvas is powerful and offers new functionality,

but it’s hard to test, just like with Shadow DOM, with your

traditional automation tactics.

CSS implementations vary depending on the browser and

how you have structured your website. Say, for instance,

you have to test in Internet Explorer 8, and you’re using a

CSS pseudo selector. While this would work in most mod-

ern browsers, in IE8 you could face challenges when test-

ing your website. As a result, the implementations vary

and that offers different challenges and different con-

straints depending on which browsers you care about.

http://smartbear.com
https://smartbear.com/product/testcomplete/overview/

WEB TESTING AND SELENIUM: THE CURRENT STATE AND FUTURE POSSIBILITIES 9

The Evolution of Selenium:
How Selenium is Adjusting to
Current Trends

The big question remains for modern testers: how is

Selenium accommodating to these different trends and

challenges? In this section, we’ll walk through each of

these challenges as well as additional challenges facing

testers today.

Mobile

One of the ways Selenium is evolving to meet the de-

mands of mobile web and native apps is through its sup-

port of Appium, for both iOS and Android mobile, web

and hybrid application. If you are someone who is testing

Android native and hybrid applications, there is Selen-

droid, an automation framework which drives off the UI of

Android native and hybrid applications and mobile web.

For iOS native web and hybrid apps, there is iOS driver

Responsive UI

There are numerous open source and some commer-

cial solutions that work with Selenium WebDriver, out

of the box. These solutions help deal with the chal-

lenges of visual anomalies and responsive UI. These

solutions can be added to your existing automation

process to ensure that things look correct in the cor-

rect resolution, on the correct device, in the correct

direct response size.

Here’s how these solutions work:

A lot of these libraries can be added to your existing

test suites, giving you the ability to do an image com-

parison. This visual testing library will take a baseline

image of your application and then the next time it

runs, it will look for anomalies based on that.

These libraries allow you to create a baseline of

different checkpoints of your responsive UI. These

checkpoints can come in handy when catching bugs,

especially when you’re changing the layout and want

to ensure that it’s accurate to the human eye.

http://smartbear.com
https://smartbear.com/product/testcomplete/overview/

WEB TESTING AND SELENIUM: THE CURRENT STATE AND FUTURE POSSIBILITIES 10

If you’re using an automated testing tool, like TestCom-

plete, Shadow DOM shouldn’t be a testing issue. A tool

like TestComplete interacts at the operating system level,

rather than the web interface level. What that means is

that TestComplete has the right access levels. The bene-

fit is that your team is not reverse engineering and inject-

ing JavaScript into the DOM and then making it dance.

An automated testing tool like TestComplete is actually

getting the full browser experience, and getting the Ja-

vaScript rendering for that browser. This enables you to

use the same test across different browsers, irrespective

of whether you are accessing DOM or Shadow DOM.

DOM to Shadow DOM

There’s no official support for Shadow DOM in Selenium yet,

and it’s not for lack of trying. The core team has set down

several times to hash out an implementation for the API for

Selenium. One of the biggest roadblocks to consider is that

the W3C specification for Shadow DOM is not complete.

Shadow DOM is supported in all versions of Chrome and

Opera. It is not supported in IE, Edge, Firefox, or Safari. The

support for shadow DOM across browsers looks something

like this:

http://smartbear.com
https://smartbear.com/product/testcomplete/overview/

WEB TESTING AND SELENIUM: THE CURRENT STATE AND FUTURE POSSIBILITIES 11

semantic markup that’s not likely to change and is help-

fully named. If it’s not on that specific thing you’re trying

to interact with, it will hopefully be the parent element for

that object. You can scope to that, and then walk into it.

If that’s not readily available, you could use something

like a CSS pseudo-selector, which enables you to walk

through the hierarchy of the DOM to scope to specific

elements.

As Dave Haeffner of Elemental Selenium explains:

CSS Pseudo-classes work by walking through the

structure of an object and targeting a specific part of

it based on a relative number (e.g. the third <td> cell

from a row in the table body). This works well with ta-

bles since we can grab all instances of a target (e.g.

the third <td> cell from each <tr> in the table body)

and use it in our test — which would give us all of the

data for the third column.

The final option is for testers to work with dev to add

a unique locator. The key to success here is making

developers understand the specific use case. Typi-

cally, it’s a fairly trivial thing for them to add once they

Future Challenges and
Solutions: 2016 and Beyond
We have looked at the past and current trends and chal-

lenges, and how Selenium can accommodate each. But

there are also trends on the horizon that could present

challenges for testers in the years ahead. These are not

the burning things which testers encounter on a day-to-

day basis. But they will have a greater impact in the future.

Challenge: Handling dynamic objects

Let’s assume you have a user ID field which has a username

as Nikhil123. What happens when you record your test is that

this field is automatically filled when the webpage is ren-

dered. The problem is that when the webpage is rendered,

the user ID field might be different. Rather than Nikhil123, it

might be Nikhil1234. Obviously the test will start failing be-

cause the user field or the user ID has changed.

Solution:

The first question to ask is: is there another way to write this

test, to interact with this element that does not require a

dynamic locator? Ideally, there’s some other locator that has

http://smartbear.com
https://smartbear.com/product/testcomplete/overview/
http://elementalselenium.com/tips/25-tables

WEB TESTING AND SELENIUM: THE CURRENT STATE AND FUTURE POSSIBILITIES 12

How can handle both of these pop-ups through Seleni-

um, and which can be done well with Selenium?

Solution:

There is a limit to the things that Selenium can interact

with, and since it’s for driving the web browser, there are

things outside of Selenium’s control. Operation sys-

tem-level pop-ups like print dialogs, file download, file

upload dialogs can be a challenge for Selenium. Howev-

er, handling browser-level popups are easy with Seleni-

um.

understand what you’re trying to do. Once that happens

and you have more of those conversations over time, and

you give more examples to the development team, they

can start to see, “Oh, if I actually thought about this when

building it, this would provide a shortcut for testing.”

Challenge: Dealing with pop-up windows

There are two types of pop-up windows — web-based and

window-based. Let’s see how they differ:

You are on a website — let’s use SmartBear.com as an exam-

ple — and you click to download a tool, like TestComplete.

Before you download the tool, you want to print the overview

page, so that you can show it to your manager. If you right

click and do the print command, that command is actually

coming from the window, rather than the web.

At the same time, there might be a web-based pop-up, which

is basically an alert button which shows you whether you

want to go ahead with a particular action, or whether you

want to cancel a particular action. As another example, let’s

say you are on Amazon and you want to buy something.

When you want to check out, they ask you whether this is the

item you want to buy. That pop-up is coming from the web,

rather than the window.

http://smartbear.com
https://smartbear.com/product/testcomplete/overview/

WEB TESTING AND SELENIUM: THE CURRENT STATE AND FUTURE POSSIBILITIES 13

nium knows that there are multiple windows for that

session, so you can actually switch between them,

and then once you do switch, then you can interact

with that page. However, as evident, you have to

switch back, if you want to go back to the previous

window and test it.

Challenge: Slow, brittle, hard to maintain tests

Slow, brittle, and hard to maintain — these are the most

common words that are associated with Selenium. The

fact is that with Selenium IDE record and playback tools

it’s very easy to paint yourself into a corner — to end up

with slow, brittle, and hard to maintain tests. That’s a real

challenge associated with Selenium unless you know

how to mitigate it.

Solution:

The key to ensuring that your tests are easy to maintain

is to follow a modular testing practice. For example, if

you’re building a webpage test — again, let’s say, Ama-

zon.com — the modular test design would be to look at

the login button, log out button, and product recommen-

dations as one module. By building tests with module

design, you’re able to reuse the modules in different

sets or different test cases.

Challenge: Multi-tab testing

The third part of the testing that is encountered often is multi-

tab testing. Again, if we’re testing SmartBear.com and want

to open a separate tab to look at the TestComplete prod-

uct page, you’re not opening in the same window. Instead,

you’re opening it in the adjacent window. Again, it’s import-

ant to think about the experience of the user. Users will right

click and then open the tab in the adjacent window. How do

you replicate that scenario when you go back to the product

page when writing the test case through Selenium?

Solution:

If you truly need to test new tabs, the best you can do is is-

sue keyboard keys to control tab (Ctrl + tab) to the next tab.

As Dave Haeffner explains on his website:

This can be done to a specific element, or generically with Se-

lenium’s Action Builder. Either approach will send a key press.

The latter will send it to the element that’s currently in focus in

the browser (so you don’t have to specify a locator along with

it), whereas the prior approach will send the key press direct-

ly to the element found.

You can also write your tests so that they interact with

new windows. If you open a link in a new window, Sele-

http://smartbear.com
https://smartbear.com/product/testcomplete/overview/
http://elementalselenium.com/tips/4-work-with-multiple-windows
http://elementalselenium.com/tips/61-keyboard-keys

WEB TESTING AND SELENIUM: THE CURRENT STATE AND FUTURE POSSIBILITIES 14

The other way to build a modular test design would be to

not restrict it to the test cases, but actually building modu-

lar test data, as well as using it for test environments. For

example, you can build modular test environments, de-

pending on the browsers or operating system. We recent-

ly did a webinar on this topic which can be accessed here.

Challenge: Scaling tests

Once you figure out how to write tests that are easy to main-

tain and are actually performing well, how do you grow your

testing practice so that you can cover potentially hundreds,

or thousands, of use cases?

Solution:

The open source option for scaling your test infrastructure is

using something like Selenium Grid, which is a built-in option

within Selenium, which can spin up a complete network of

machines that you coordinate and control test execution on.

There are also third party solutions that offer Selenium Grid

as a service and point at their cloud endpoint to run tests.

There are commercial options, which include additional

functionality that isn’t available with an open source solu-

tions. TestComplete’s TestExecute gives testers the ability to

execute Selenium tests, in a test lab, virtual machines, or

even cloud.

TestComplete’s integration with Selenium also

enables teams to:

• Debug failed Selenium scripts quickly using

screenshots.

• Get rapid feedback on product builds and save time

by using out of the box plugins for CI systems.

• Use in-depth reports to get more insights into code

coverage and quality

• Spend less time creating and maintaining Selenium

scripts by reusing existing Selenium tests

Challenge: Reporting

Reporting can be a real challenge, because out-of-the-

box, Selenium offers limited reporting. This is a chal-

lenge for testers, as ideally the goal of testing is to be

able to find an issue and show it to the necessary peo-

ple so they can understand where something failed.

Solution:

When it comes to reporting, there are two things to

consider — human readable and machine readable re-

porting. For machine readability with something like your

http://smartbear.com
https://smartbear.com/product/testcomplete/overview/
http://www2.smartbear.com/outbound-TestComplete-Stable-UI-Tests-Webinar-Replay.html?sr=blog&md=ebook

WEB TESTING AND SELENIUM: THE CURRENT STATE AND FUTURE POSSIBILITIES 15

continuous integration server, you want metrics to check

the health of a test job or tests over time as well as getting

stacked trace information out of your test failures.

When it comes to human readability, you want to have

something like an HTML report that has screenshots, vid-

eos, and additional visibility. Up until recently, this was a real

challenge, something you might have had to create yourself.

There is now an open source library, called the Allure frame-

work, which is an HTML report generator for Selenium and

that is language agnostic. It works for every primary pro-

gramming language and major test framework. The Allure

framework consumes data XML and screenshots then ren-

ders an HTML mini-app that’s built using Angular.

Additionally, TestComplete offers a number of reporting fea-

tures. TestComplete also generates detailed logs along with

snapshots of all actions performed during automated testing.

This in turn helps testers perform deep analysis of automat-

ed test results and quickly locate and fix errors. You can try

TestComplete here.

Additionally, QAComplete can also be used to get detailed

reports on Selenium tests. It allows you to easily link Seleni-

um tests with user stories and associated defects. As a result,

you can leverage end-to-end traceability reports for one

view of your testing efforts. Full two-way integration with

Jira and other tools helps you get reporting data from

other systems as well. Try QAComplete here.

Challenge: Test Management

Even if you’re writing automated tests with Selenium,

you’re traditionally also doing some manual testing as

well, just to ensure that you’re covering the areas which

cannot be tested through automation. Additionally, you

might be using API tests to test the backend. The ques-

tion then arises: How do you manage these tests? How

do you get end-to-end traceability of tests with require-

ments and defects? Most importantly, how do you de-

cide when to ship the product? And finally, how do you

know what your test coverage look like?

Solution:

If you’re using Selenium for testing the front-end of a

mobile app from a website, and then on the back-end

you might be testing through an open source solution

like SoapUI. In such a case, you might want to consider

investing in a solution for test management. With a tool

like QAComplete, you’ll get real-time insights into your

testing state through built-in traceability across require-

http://smartbear.com
https://smartbear.com/product/testcomplete/overview/
https://smartbear.com/product/testcomplete/web-module/free-trial/?sr=blog&md=ebook
https://smartbear.com/product/qacomplete/free-trial/?sr=blog&md=ebook

WEB TESTING AND SELENIUM: THE CURRENT STATE AND FUTURE POSSIBILITIES 16

ments, tests, and defects. This allows you to manage a com-

plex testing process by getting full visibility into test changes

and their impact with versioning. You can try QAComplete

here.

Challenge: Limited Selenium support

There’s no 1-800 number for Selenium. So, when there’s an

issue, you don’t really have someone to call. The best you

can do is find people in the community who are interested in

helping. It’s a great part about the community, but it is a chal-

lenge. You have to know where to find these people and this

information. Support can be a challenge if you’re just getting

started.

Solution:

The biggest challenge with Selenium is information. There

is a strong community within the Selenium Project. If you’re

just looking for answers as quickly as you can, you can also

use the Selenium IRC chat channel. This is the place where

the core practitioners hang out and answer question and ask

questions about Selenium. It’s the best resource that you can

find with regards to Selenium.

http://smartbear.com
https://smartbear.com/product/testcomplete/overview/

WEB TESTING AND SELENIUM: THE CURRENT STATE AND FUTURE POSSIBILITIES 17

• Perform end-to-end testing: Combine Selenium with API tests to go beneath the user
interface and account for unpredicted changes made to back-end services.

• Fix issues quickly: Screenshots captured during test runs enable you to find and fix failed
Selenium WebDriver scripts swiftly.

• Reduce Setup and Maintenance Costs: Prevent hidden costs associated with setting up,
maintaining, and scaling Selenium Grid for only $499 a year.

• Scale Selenium Tests: Execute Selenium WebDriver tests from the cloud or virtual machines.
Run multiple tests in parallel to reduce testing time.

• Integrate with CI systems: Get rapid feedback on product builds and save time by using
out of the box plugins for CI systems.

• Get Actionable Results: In-depth reports along with console logs help you get a single
view of different Selenium WebDriver tests run and detect failures quickly.

Overcome your test automation challenges
Whether you’re looking to get the most out of your Selenium tests or manage the limitations that come with

an open source solution, integrating Selenium with an automated testing tool like TestComplete can help.

TestComplete Web helps you create automated functional tests for websites,
web apps, and mobile web applications.

With TestComplete’s integration to Selenium WebDriver, developers and testers can:

LEARN MORE ABOUT TESTCOMPLETE

http://smartbear.com
https://smartbear.com/product/testcomplete/overview/
https://smartbear.com/product/testcomplete/overview/

WEB TESTING AND SELENIUM: THE CURRENT STATE AND FUTURE POSSIBILITIES 1810 THINGS DEVELOPERS WISHT THEIR BOSSES UNDERSTOOD ABOUT CODE REVIEW 18

Additionally,
Selenium’s integration to test management platform QAComplete

provides the following:
• Full Visibility into Selenium tests: Get real-time insights into your testing state

through built-in traceability across requirements, Selenium tests, and defects.
Manage complex testing process by getting full visibility into changes and their
impact with versioning.

• End-to-End-View: Plan, track, and proactively manage manual, automated, and
API tests in one repository to mitigate risk. Launch with certainty by getting up-
to-date information about your open source Selenium and SoapUI tests along
with TestComplete and Ready! API tests.

• Make informed decision: Use reports to get better understanding of test cover-
age, defect trending, and sprint status. Isolate, resolve, and automate the res-
olution of testing bottlenecks by defining escalation rules and getting instant
notifications.

LEARN MORE ABOUT QACOMPLETE

http://smartbear.com
https://smartbear.com/product/testcomplete/overview/
https://smartbear.com/product/qacomplete/overview/
https://smartbear.com/product/qacomplete/overview/

WEB TESTING AND SELENIUM: THE CURRENT STATE AND FUTURE POSSIBILITIES 19

TestComplete Platform:
Testing for Desktop, Mobile,

& Web Applications

TRY IT FOR FREE

http://smartbear.com
https://smartbear.com/product/testcomplete/overview/
http://smartbear.com
https://smartbear.com/product/testcomplete/free-trial/
https://smartbear.com/product/testcomplete/overview/
http://smartbear.com

WEB TESTING AND SELENIUM: THE CURRENT STATE AND FUTURE POSSIBILITIES 20

Over 4 million software professionals and
25,000 organizations across 194 countries

use SmartBear tool

4M+ 25K+ 194
users organizations countries

See Some Succesful Customers >>

API
READINESS

TESTING PERFORMANCE
MONITORING

CODE
COLLABORATION

Functional testing through
performance monitoring

SEE API READINESS
PRODUCTS

Functional testing,
performance testing and test

management

Synthetic monitoring for API,
web, mobile, SaaS, and

Infrastructure

Peer code and documentation
review

SEE TESTING
PRODUCTS

SEE MONITORING
PRODUCTS

SEE COLLABORATION
PRODUCTS

http://smartbear.com
https://smartbear.com/product/testcomplete/overview/
http://smartbear.com/company/customers/
http://smartbear.com/product/ready-api/overview/
http://smartbear.com/products/testing/
http://smartbear.com/product/alertsite/overview/
http://smartbear.com/product/collaborator/overview/
http://smartbear.com

WEB TESTING AND SELENIUM: THE CURRENT STATE AND FUTURE POSSIBILITIES 21

http://smartbear.com
https://smartbear.com/product/testcomplete/overview/
https://smartbear.com/product/testcomplete/overview/

